AI-Powered Holter for Affordable and Accurate Arrhythmia Detection
Downloads
Cardiac arrhythmias pose significant health risks, and current detection systems often suffer from high costs and limited accessibility, particularly in resource-constrained settings. This research aimed to develop a portable, cost-effective Holter monitoring device for accurate arrhythmia detection using machine learning. By combining an inexpensive ESP32 microcontroller with an AD8232 ECG sensor, a data acquisition system was built. Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Multilayer Perceptron (MLP) models were trained and evaluated for arrhythmia classification. The SVM model achieved the highest accuracy (78.53%) using a linear kernel and features selected by a random forest algorithm. While KNN and MLP also showed promise, the results emphasized the importance of hyperparameter tuning and feature selection. This research demonstrated the feasibility of creating an affordable and intelligent Holter device capable of effective arrhythmia detection, potentially increasing access to cardiac monitoring and enabling early diagnosis in resource-limited environments.
Copyright (c) 2025 Steyve Nyatte (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlikel 4.0 International (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






