Isolation, Quantification, and Plaque Morphology Analysis of Lytic Bacteriophages from River Water Targeting Clinical MDR Klebsiella pneumoniae Using the Double-Layer Agar Method
Downloads
Antimicrobial resistance is a growing global health threat and is projected to cause up to 10 million deaths per year by 2050. Klebsiella pneumoniae is a priority pathogen due to its multidrug resistance (MDR) mechanisms, such as extended-spectrum β-lactamases and carbapenemases, which significantly limit therapeutic options and increase the need for antimicrobial alternatives. This study aimed to isolate and quantify active lytic bacteriophages capable of infecting clinical MDR K. pneumoniae from river water samples. Water samples were processed by centrifugation and membrane filtration to remove debris and bacterial cells, then incubated with MDR K. pneumoniae in Luria broth at 37°C to enhance phage adsorption and amplification. Phage detection and enumeration were performed using the double-layer agar method. Plaque morphology was observed to confirm lytic activity, while serial dilutions were used to determine phage titer. Several lytic bacteriophages were successfully isolated from river water samples. The plaques formed were clear, spherical, and well-defined, with some exhibiting halos indicative of possible depolymerase activity. Phage titers ranged from 1.28 × 10³ to 2.00 × 10⁶ PFU/mL, indicating efficient replication against MDR K. pneumoniae without repeated enrichment processes. River water is a potential source of lytic bacteriophages capable of infecting MDR K. pneumoniae. These findings emphasize the role of aquatic environments as natural reservoirs of phages with potential use in the development of future antimicrobial or biocontrol strategies and support the need for further studies on the host range, stability, and therapeutic applications of the isolated phages.
[1] M. Hope et al., “Progress on implementing the WHO-GLASS recommendations on priority pathogen-antibiotic sensitivity testing in Africa: A scoping review,” Wellcome Open Res., vol. 9, p. 692, 2024, doi: 10.12688/wellcomeopenres.23133.1.
[2] D. I. Swerdlow, M. Michail, and K. Zacharias, Role of Conventional Risk Factors in Genetic Susceptibility to Cardiovascular Diseases. Elsevier Inc., 2016. doi: 10.1016/B978-0-12-803312-8.00008-2.
[3] K. W. K. Tang, B. C. Millar, and J. E. Moore, “Antimicrobial Resistance (AMR),” Br. J. Biomed. Sci., vol. 80, no. June, pp. 1–11, 2023, doi: 10.3389/bjbs.2023.11387.
[4] J. Cooke, “Antimicrobial resistance: a major priority for global focus,” Eur. J. Hosp. Pharm., vol. 29, no. 2, pp. 63–64, 2022, doi: 10.1136/ejhpharm-2022-003241.
[5] Z. Ye, M. Li, Y. Jing, K. Liu, Y. Wu, and Z. Peng, “What Are the Drivers Triggering Antimicrobial Resistance Emergence and Spread? Outlook from a One Health Perspective,” Antibiotics, vol. 14, no. 6, pp. 1–23, 2025, doi: 10.3390/antibiotics14060543.
[6] V. Arato, M. M. Raso, G. Gasperini, F. B. Scorza, and F. Micoli, “Prophylaxis and treatment against klebsiella pneumoniae: Current insights on this emerging anti-microbial resistant global threat,” Int. J. Mol. Sci., vol. 22, no. 8, 2021, doi: 10.3390/ijms22084042.
[7] S. Shah, P. Adhikari, P. Upadhaya, and P. Shah, “Clinical, Bacteriological and Radiological Study of Community Acquired Pneumonia Cases at Tertiary Medical Center in Kathmandu, Nepal,” Nepal Med. Coll. J., vol. 22, no. 1–2, pp. 1–7, 2020, doi: 10.3126/nmcj.v22i1-2.29995.
[8] T. Karampatakis, K. Tsergouli, and P. Behzadi, “Carbapenem-Resistant Klebsiella pneumoniae: Virulence Factors, Molecular Epidemiology and Latest Updates in Treatment Options,” Antibiotics, vol. 12, no. 2, 2023, doi: 10.3390/antibiotics12020234.
[9] S. Sunarno, N. Puspandari, F. Fitriana, U. A. Nikmah, H. H. Idrus, and N. S. D. Panjaitan, “Extended spectrum beta lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae in Indonesia and South East Asian countries: GLASS Data 2018,” AIMS Microbiol., vol. 9, no. 2, pp. 218–227, 2023, doi: 10.3934/microbiol.2023013.
[10] A. Salawudeen et al., “Epidemiology of multidrug-resistant Klebsiella pneumoniae infection in clinical setting in South-Eastern Asia: a systematic review and meta-analysis,” Antimicrob. Resist. Infect. Control, vol. 12, no. 1, pp. 1–14, 2023, doi: 10.1186/s13756-023-01346-5.
[11] S. Sharma, T. Banerjee, A. Kumar, G. Yadav, and S. Basu, “Extensive outbreak of colistin resistant, carbapenemase (bla OXA-48, bla NDM) producing Klebsiella pneumoniae in a large tertiary care hospital, India,” Antimicrob. Resist. Infect. Control, vol. 11, no. 1, pp. 1–9, 2022, doi: 10.1186/s13756-021-01048-w.
[12] R. Bushra, Z. Ahmed, S. Naeem, and J. Ishaq, “Curbing Anti-Microbial Resistance of Synthetic Medicinal Agents Using Herbal Drug Alternatives: Current Trends And Future Insights,” Prospect. Pharm. Sci., vol. 23, no. 2, pp. 50–66, 2025, doi: 10.56782/pps.341.
[13] M. M. Ahmed, H. E. Khadum, and H. M. S. Jassam, “Medicinal Herbs as Novel Therapies against Antibiotic-Resistant Bacteria,” Res. J. Pharm. Technol., vol. 16, no. 1, pp. 62–66, 2023, doi: 10.52711/0974-360X.2023.00011.
[14] A. I. Saputra and K. A. Putri, “Comparative in Vitro Antibacterial Activity of Red Ginger ( Zingiber Officinale Var . Rubrum ) Extract and Conventional Antibiotics Against Pathogenic Escherichia Coli,” Teknokes J., vol. 18, no. 3, pp. 174–181, 2025.
[15] M. Hosseini Hooshiar et al., “The potential use of bacteriophages as antibacterial agents in dental infection,” Virol. J. , vol. 21, no. 1, 2024, doi: 10.1186/s12985-024-02510-y.
[16] M. S. Mulani, S. N. Kumkar, and K. R. Pardesi, “ Characterization of Novel Klebsiella Phage PG14 and Its Antibiofilm Efficacy ,” Microbiol. Spectr., vol. 10, no. 6, 2022, doi: 10.1128/spectrum.01994-22.
[17] H. R. Ali, C. Valdivia, and D. Negus, “Bacteriophage-embedded and coated alginate layers inhibit biofilm formation by clinical strains of Klebsiella pneumoniae,” J. Appl. Microbiol., vol. 136, no. 5, 2025, doi: 10.1093/jambio/lxaf099.
[18] S. Abbas et al., “Bacteriophage therapy: a possible alternative therapy against antibiotic-resistant strains of Klebsiella pneumoniae,” Front. Microbiol., vol. 16, 2025, doi: 10.3389/fmicb.2025.1443430.
[19] X. Peng et al., “Isolation, characterization, and genomic analysis of a novel bacteriophage vB_Kp_XP4 targeting hypervirulent and multidrug-resistant Klebsiella pneumoniae,” Front. Microbiol., vol. 16, no. March, 2025, doi: 10.3389/fmicb.2025.1491961.
[20] Q. Fang, Y. Feng, A. McNally, and Z. Zong, “Characterization of phage resistance and phages capable of intestinal decolonization of carbapenem-resistant Klebsiella pneumoniae in mice,” Commun. Biol., vol. 5, no. 1, 2022, doi: 10.1038/s42003-022-03001-y.
[21] C. Anastassopoulou, S. Ferous, A. Petsimeri, G. Gioula, and A. Tsakris, “Phage-Based Therapy in Combination with Antibiotics: A Promising Alternative against Multidrug-Resistant Gram-Negative Pathogens,” Pathogens, vol. 13, no. 10, 2024, doi: 10.3390/pathogens13100896.
[22] J. Xing et al., “Revisiting therapeutic options against resistant klebsiella pneumoniae infection: Phage therapy is key,” Microbiol. Res., vol. 293, no. October 2024, p. 128083, 2025, doi: 10.1016/j.micres.2025.128083.
[23] X. Kou, X. Yang, and R. Zheng, “Challenges and opportunities of phage therapy for Klebsiella pneumoniae infections,” Appl. Environ. Microbiol., vol. 90, no. 10, 2024, doi: 10.1128/aem.01353-24.
[24] A. S. Kinanti, A. A. Prihanto, and Y. D. W. I. Jatmiko, “Phage diversity from shrimp ponds underpinning multi-host lytic activity in Vibrio pathogens,” Biodiversitas, vol. 26, no. 9, pp. 4457–4464, 2025, doi: 10.13057/biodiv/d260918.
[25] H. Ramadhani et al., “Effects of Bacteriophage in Postoperative Endophthalmitis Caused by Staphylococcus aureus,” Pharmacogn. J. , vol. 16, no. 5, pp. 1188–1191, 2024, doi: 10.5530/pj.2024.16.194.
[26] B. Ansani Takwin, D. Wahjuningrum, W. Widanarni, and H. Nasrullah, “The potential of bacteriophage for controlling Vibrio parahaemolyticus as in-vitro,” J. Akuakultur Indones., vol. 23, no. 2, pp. 122–133, 2024, doi: 10.19027/jai.23.2.122-133.
[27] A. ATIKANA et al., “Characterization of EPS7-like Enterobacteria phage Isolated from Indonesia,” Microbiol. Indones., vol. 15, no. 1, pp. 8–14, 2021, doi: 10.5454/mi.15.1.2.
[28] R. N. Sunarti, P. L. Hariani, and S. Budiarti, “Exploration of bacteriophages from waters in Palembang, Indonesia as biocontrol of antibiotic-resistant Escherichia coli,” Biodiversitas, vol. 24, no. 11, pp. 6069–6081, 2023, doi: 10.13057/biodiv/d241128.
[29] N. Li, Y. Zeng, R. Bao, T. Zhu, D. Tan, and B. Hu, “Isolation and Characterization of Novel Phages Targeting Pathogenic Klebsiella pneumoniae,” Front. Cell. Infect. Microbiol., vol. 11, no. December, pp. 1–13, 2021, doi: 10.3389/fcimb.2021.792305.
[30] J. Bai et al., “Isolation and Characterization of vB_kpnM_17-11, a Novel Phage Efficient Against Carbapenem-Resistant Klebsiella pneumoniae,” Front. Cell. Infect. Microbiol., vol. 12, no. July, pp. 1–13, 2022, doi: 10.3389/fcimb.2022.897531.
[31] S. Liu, H. Xu, R. Cao, Z. Yang, and X. Li, “Isolation, Identification, and Biological Characterization of Phage vB_KpnM_KpVB3 Targeting Carbapenem-Resistant Klebsiella pneumoniae ST11,” J. Glob. Antimicrob. Resist., vol. 37, pp. 179–184, 2024, doi: 10.1016/j.jgar.2024.03.007.
[32] A. Senhaji-Kacha et al., “Isolation and characterization of two novel bacteriophages against carbapenem-resistant Klebsiella pneumoniae,” Front. Cell. Infect. Microbiol., vol. 14, no. August, pp. 1–12, 2024, doi: 10.3389/fcimb.2024.1421724.
[33] R. Nepal, G. Houtak, S. Karki, G. Dhungana, S. Vreugde, and R. Malla, “Genomic characterization of three bacteriophages targeting multidrug resistant clinical isolates of Escherichia, Klebsiella and Salmonella,” Arch. Microbiol., vol. 204, no. 6, pp. 1–9, 2022, doi: 10.1007/s00203-022-02948-0.
[34] H. T. Nour El-Din et al., “Isolation, Characterization, and Genomic Analysis of Bacteriophages Against Pseudomonas aeruginosa Clinical Isolates from Early and Chronic Cystic Fibrosis Patients for Potential Phage Therapy,” Microorganisms, vol. 13, no. 3, 2025, doi: 10.3390/microorganisms13030511.
[35] T. S. Sada and T. S. Tessema, “Isolation and characterization of lytic bacteriophages from various sources in Addis Ababa against antimicrobial-resistant diarrheagenic Escherichia coli strains and evaluation of their therapeutic potential,” BMC Infect. Dis., vol. 24, no. 1, pp. 1–21, 2024, doi: 10.1186/s12879-024-09152-z.
[36] R. Nadeem, K. Ahmed, L. Salama, and A. M. Elhoufi, “Tolerable Maximum Positive End Expiratory Pressure in Mechanically Ventilated Patients and Its Impact on Blood Flow across Cardiac Valves: Index Case Report of a Physiology Study,” Dubai Med. J., vol. 2, no. 4, pp. 163–167, 2019, doi: 10.1159/000504045.
[37] S. Araújo, V. Silva, M. Quintelas, Â. Martins, G. Igrejas, and P. Poeta, “From soil to surface water: exploring Klebsiella ’s clonal lineages and antibiotic resistance odyssey in environmental health,” BMC Microbiol., vol. 25, no. 1, 2025, doi: 10.1186/s12866-025-03798-8.
[38] V. M. Balcão et al., “Isolation and Molecular Characterization of a Novel Lytic Bacteriophage that Inactivates MDR Klebsiella Pneumoniae Strains,” Pharmaceutics, vol. 14, no. 7, 2022, doi: 10.3390/pharmaceutics14071421.
[39] V. Daubie et al., “Determination of phage susceptibility as a clinical diagnostic tool: A routine perspective,” Front. Cell. Infect. Microbiol., vol. 12, no. September, 2022, doi: 10.3389/fcimb.2022.1000721.
[40] P. Paranos, S. Pourmaras, and J. Meletiadis, “A single-layer spot assay for easy, fast, and high-throughput quantitation of phages against multidrug-resistant Gram- negative pathogens,” J. Clin. Microbiol., vol. 62, no. 8, 2024, doi: 10.1128/jcm.00743-24 2.
[41] S. J. Jo et al., “Standardization of the Agar Plate Method for Bacteriophage Production,” Antibiotics, vol. 14, no. 1, pp. 1–14, 2025, doi: 10.3390/antibiotics14010002.
[42] G. Mancuso, A. Midiri, E. Gerace, and C. Biondo, “Bachterial Antibiotic Resistanc: The Most Critical Pathogens,” Pathogens, vol. 10, no. 1310, pp. 1–14, 2021, doi: 10.3390/pathogens10101310.
[43] T. Wakinaka, M. Matsutani, J. Watanabe, Y. Mogi, M. Tokuoka, and A. Ohnishi, “Identification of Capsular Polysaccharide Synthesis Loci Determining Bacteriophage Susceptibility in Tetragenococcus halophilus,” Microbiol. Spectr., vol. 11, no. 3, 2023, doi: 10.1128/spectrum.00385-23.
[44] J. Y. Ho et al., “Multidrug-resistant bacteria and microbial communities in a river estuary with fragmented suburban waste management,” J. Hazard. Mater., vol. 405, no. November 2020, p. 124687, 2021, doi: 10.1016/j.jhazmat.2020.124687.
[45] D. L. Peters, F. Gaudreault, and W. Chen, “Functional domains of Acinetobacter bacteriophage tail fibers,” Front. Microbiol., vol. 15, 2024, doi: 10.3389/fmicb.2024.1230997.
[46] R. Concha-Eloko et al., “DepoScope: Accurate phage depolymerase annotation and domain delineation using large language models,” PLoS Comput. Biol., vol. 20, no. 8 August, pp. 1–15, 2024, doi: 10.1371/journal.pcbi.1011831.
[47] Q. Fang and Z. Zong, “Lytic Phages against ST11 K47 Carbapenem-Resistant Klebsiella pneumoniae and the Corresponding Phage Resistance Mechanisms,” mSphere, vol. 7, no. 2, pp. 1–11, 2022, doi: 10.1128/msphere.00080-22.
[48] M. J. Tisza et al., “Longitudinal phage–bacteria dynamics in the early life gut microbiome,” Nat. Microbiol., vol. 10, no. 2, pp. 420–430, 2025, doi: 10.1038/s41564-024-01906-4.
[49] A. Ramadan et al., “Fully Characterized Effective Bacteriophages Specific against Antibiotic-Resistant Enterococcus faecalis, the Causative Agent of Dental Abscess,” Med., vol. 60, no. 3, 2024, doi: 10.3390/medicina60030501.
[50] R. Concha-Eloko et al., “DepoScope: Accurate phage depolymerase annotation and domain delineation using large language models,” PLoS Comput. Biol., vol. 20, no. 8 August, pp. 1–21, 2024, doi: 10.1371/journal.pcbi.1011831.
[51] E. J. Mendoza, K. Manguiat, H. Wood, and M. Drebot, “Two Detailed Plaque Assay Protocols for the Quantification of Infectious SARS-CoV-2,” Curr. Protoc. Microbiol., vol. 57, no. 1, pp. 1–15, 2020, doi: 10.1002/cpmc.105.
[52] T. Glonti and J. Pirnay, “In Vitro Measurement Of Phage Characteristics That Are Im- portant for Phage Therapy Outcome,” Viruses, vol. 14, no. 1940, pp. 1–23, 2022.
[53] R. C. Lin, J. C. Sacher, P. J. Ceyssens, J. Zheng, A. Khalid, and J. R. Iredell, “Phage Biobank: Present Challenges and Future Perspectives,” Curr. Opin. Biotechnol., vol. 68, pp. 221–230, 2021, doi: 10.1016/j.copbio.2020.12.018.
[54] J. Meijer, P. Skiadas, P. B. Rainey, P. Hogeweg, and B. E. Dutilh, “Eco-evolutionary dynamics of massive, parallel bacteriophage outbreaks in compost communities,” 2023, [Online]. Available: http://biorxiv.org/lookup/doi/10.1101/2023.07.31.550844
[55] L. Cui, S. Veeranarayanan, K. Thitiananpakorn, and D. L. Wannigama, “Bacteriophage Bioengineering: A Transformative Approach for Targeted Drug Discovery and Beyond,” Pathogens, vol. 12, no. 9, pp. 12–15, 2023, doi: 10.3390/pathogens12091179.
[56] C. Ferriol-González et al., “ Targeted phage hunting to specific Klebsiella pneumoniae clinical isolates is an efficient antibiotic resistance and infection control strategy ,” Microbiol. Spectr., vol. 12, no. 10, pp. 1–20, 2024, doi: 10.1128/spectrum.00254-24.
[57] S. Ragab, M. K. Mustafa, Y. Y. Hassan, A. Nasr, B. H. A. El Hady, and A. El-Shibiny, “Potential use of bacteriophages as biocontrol agents against multidrug-resistant pathogens in wastewater treatment: a review,” Environ. Sustain., vol. 7, no. 3, pp. 287–302, 2024, doi: 10.1007/s42398-024-00322-y.
[58] R. M. Soliman, B. A. Othman, S. A. Shoman, M. I. Azzam, and M. M. Gado, “Biocontrol of multi-drug resistant pathogenic bacteria in drainage water by locally isolated bacteriophage,” BMC Microbiol., vol. 23, no. 1, pp. 1–11, 2023, doi: 10.1186/s12866-023-02847-4.
[59] M. D. Zapata-Montoya, L. Salazar-Ospina, and J. N. Jiménez, “Combating Environmental Antimicrobial Resistance Using Bacteriophage Cocktails Targeting β-Lactam-Resistant High-Risk Clones of Klebsiella pneumoniae and Escherichia coli in Wastewater: A Strategy for Treatment and Reuse,” Water (Switzerland), vol. 17, no. 15, pp. 1–21, 2025, doi: 10.3390/w17152236.
[60] B. Beamud, N. García-González, M. Gómez-Ortega, F. González-Candelas, P. Domingo-Calap, and R. Sanjuan, “Genetic determinants of host tropism in Klebsiella phages,” Cell Rep., vol. 42, no. 2, 2023, doi: 10.1016/j.celrep.2023.112048.
[61] A. Brady, A. Felipe-Ruiz, F. Gallego Del Sol, A. Marina, N. Quiles-Puchalt, and J. R. Penadés, “Molecular Basis of Lysis-Lysogeny Decisions in Gram-Positive Phages,” Annu. Rev. Microbiol., vol. 75, pp. 563–581, 2021, doi: 10.1146/annurev-micro-033121-020757.
[62] K. Schroven, A. Aertsen, and R. Lavigne, “Bacteriophages as drivers of bacterial virulence and their potential for biotechnological exploitation,” FEMS Microbiol. Rev., vol. 45, no. 1, pp. 1–15, 2021, doi: 10.1093/femsre/fuaa041.
[63] L. Rodríguez-Rubio, N. Haarmann, M. Schwidder, M. Muniesa, and H. Schmidt, “Bacteriophages of shiga toxin-producing escherichia coli and their contribution to pathogenicity,” Pathogens, vol. 10, no. 4, pp. 1–23, 2021, doi: 10.3390/pathogens10040404.
[64] E. Pfeifer, R. A. Bonnin, and E. P. C. Rocha, “Phage-Plasmids Spread Antibiotic Resistance Genes through Infection and Lysogenic Conversion,” MBio, vol. 13, no. 5, pp. 1–17, 2022, doi: 10.1128/mbio.01851-22.
Copyright (c) 2025 Aminah Aminah, dr. Citra, Fitri Alina Sugianto, Gadis Amalia, M Atik Martiningsih, Zulfikar Husni Faruq (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlikel 4.0 International (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






