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ABSTRACT  

Cardiac arrhythmias pose significant health risks, and current detection systems 
often suffer from high costs and limited accessibility, particularly in resource-
constrained settings. This research aimed to develop a portable, cost-effective 
Holter monitoring device for accurate arrhythmia detection using machine 
learning. By combining an inexpensive ESP32 microcontroller with an AD8232 
ECG sensor, a data acquisition system was built. Support Vector Machine (SVM), 
K-Nearest Neighbors (KNN), and Multilayer Perceptron (MLP) models were trained 
and evaluated for arrhythmia classification. The SVM model achieved the highest 
accuracy (78.53%) using a linear kernel and features selected by a random forest 
algorithm. While KNN and MLP also showed promise, the results emphasized the 
importance of hyperparameter tuning and feature selection. This research 
demonstrated the feasibility of creating an affordable and intelligent Holter device 
capable of effective arrhythmia detection, potentially increasing access to cardiac 
monitoring and enabling early diagnosis in resource-limited environments. 
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1. INTRODUCTION  

Cardiac arrhythmias, characterized by irregular 
heartbeats, pose significant health risks, including stroke, 
heart failure, and sudden cardiac arrest. The prevalence 
of these conditions necessitates effective monitoring 
systems, particularly for high-risk populations. However, 
the existing cardiac monitoring solutions, such as 
traditional Holter monitors, often come with high costs and 
require specialized medical personnel for operation and 
interpretation [1]. This limits their accessibility, especially 
in low-resource settings where healthcare infrastructure is 
inadequate [2]. As a result, many patients remain 
undiagnosed or receive delayed treatment, highlighting 
the urgent need for affordable and user-friendly 
arrhythmia detection solutions [3]. Several methods have 
been employed to detect cardiac arrhythmias, each with 
its advantages and disadvantages. For instance, deep 
learning techniques, such as convolutional neural 
networks (CNNs), have shown high accuracy in ECG 
classification [4]. However, these models require 
substantial computational resources and large datasets, 
which may not be available in all settings. Traditional 
machine learning algorithms, such as Support Vector 
Machines (SVM) and K-Nearest Neighbors (KNN), offer 
more accessible alternatives but often necessitate careful 
feature extraction and selection [5]. Additionally, wearable 
devices equipped with sensors, although convenient, may 
suffer from inaccurate data due to motion artifacts [6]. 
Furthermore, many existing solutions depend on 
proprietary software, limiting their adaptability and 
increasing costs [7]. Cardiac arrhythmias pose significant 

health risks and are often undiagnosed due to the 
limitations of the existing detection systems, particularly in 
resource-limited environments. The need for accessible 
and cost-effective solutions has led to various innovative 
approaches in the development of Holter monitoring 
devices. 

Ranjha et al. (2023) [8] explored the design of a 
wireless Holter monitor utilizing neural networks for ECG 
analysis. Their approach involved developing a low-cost 
cardiac screening system that integrates a wireless ECG 
module for real-time signal acquisition, with data 
transmitted to a cloud server. The results demonstrated a 
classification accuracy exceeding 88%. However, the 
implementation in resource-limited settings remains a 
challenge, indicating a gap that necessitates further 
exploration. Building upon this concept, Huda et al. (2023) 
[9] developed a portable, energy-efficient ECG system 
that incorporates cloud-based arrhythmia detection. Their 
device utilizes an AD8232 circuit for ECG signal 
acquisition, transmitting data via Bluetooth for analysis. 
This system achieved a remarkable accuracy of 94.03% 
in classifying abnormal heart rhythms. The advancements 
in portable technology emphasize the potential for 
widespread application but also underscore the 
importance of balancing cost with performance. In a 
comparative study, Hyun et al. (2024) [10] evaluated a 
portable ECG device (MobiCARE-MC100) against a 
traditional 24-hour Holter monitor for detecting atrial 
fibrillation post-cardiac surgery. Both devices identified an 
equivalent number of paroxysmal A-fib cases within the 
initial 24 hours. Notably, a follow-up with MobiCARE 
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revealed an increased A-fib burden in one patient (from 
9% to 38%). While MobiCARE demonstrated comparable 
accuracy, the limited sample size poses constraints on the 
generalizability of these findings. Huang et al. (2024) [11] 
investigated the effectiveness of a two-hour AI-based 
Holter monitoring system for detecting premature 
ventricular contractions (PVCs) and supraventricular 
contractions (PSVCs). Their study aimed to assess 
whether this method could outperform traditional 24-hour 
monitoring. Among 170 patients, the two-hour Holter 
displayed a positive predictive value (PPV) of 76.00% and 
a negative predictive value (NPV) of 96.35%, compared 
to 87.50% and 98.55%, respectively, for the 24-hour 
device. However, the limited sample size again raises 
questions about the robustness of the results. 

Yazid et al. (2023) [12] proposed a lightweight method 
for detecting atrial fibrillation from electrocardiographic 
signals using an improved dynamic threshold algorithm. 
By reducing the input feature size to 44 without sacrificing 
accuracy, they achieved impressive performance metrics: 
sensitivity of 99.14%, specificity of 99.12%, and accuracy 
of 99.13% over 15-second segments. For 60-second 
signals, these values reached 99.49%, 99.46%, and 
99.47%, respectively. Implemented on an Arm Cortex M4 
microcontroller, the method operates at a mere 27 mA, 
although its algorithmic complexity might hinder its 
application in highly constrained devices. Finally, 
Patibandla et al. (2024) [13] compared 24-hour ECG 
monitoring between a traditional Holter and the Vigo Heart 
patch across 119 patients. The Vigo Heart exhibited a 
significantly lower average noise percentage (1.94% vs. 
17.84% for Holter). They also observed meaningful 
correlations in maximum (129.69 vs. 113.31 bpm), 
average (74.85 vs. 76 bpm), and minimum (47.94 vs. 
59.21 bpm) heart rates. The consistency of cardiologist 
diagnoses across participants suggests that the Vigo 
Heart presents a viable alternative for ambulatory 
arrhythmia monitoring. 

The reviewed studies highlight the ongoing efforts to 
enhance the accessibility and effectiveness of Holter 
monitoring devices for cardiac arrhythmia detection. 
While advancements in wireless technology, portable 
systems, and innovative algorithms show promise, 
challenges remain in terms of cost, implementation, and 
generalizability. This literature underscores the necessity 
for further research to optimize these systems, paving the 
way for improved patient care and early arrhythmia 
detection, particularly in resource-limited settings. The 
present study aims to contribute to this body of knowledge 
by developing a cost-effective and intelligent Holter 
device that leverages machine learning algorithms for 
accurate arrhythmia detection. Despite the advancements 
in arrhythmia detection technology [14 18], significant 
gaps remain in the development of affordable [19 21], 
portable, and user-friendly systems [22 24]. Most existing 
studies focus on complex algorithms that demand 
significant computational power, which can be prohibitive 
for widespread use, particularly in developing regions. 
Additionally, there is a lack of integration of commonly 
available hardware components, such as 
microcontrollers, with effective machine learning 

algorithms. This research aims to bridge these gaps by 
leveraging accessible technology to create a practical 
solution for cardiac monitoring. 

The primary aim of this study is to design and develop 
a low-cost, intelligent Holter device that utilizes an ESP32 
microcontroller and machine learning algorithms for 
accurate cardiac arrhythmia detection. By focusing on 
easily obtainable components and avoiding the 
complexities of deep learning, this research seeks to 
provide a viable solution for continuous cardiac 
monitoring. This approach does not only enhance 
accessibility but also encourages the adoption of such 
technology in resource-limited environments, ultimately 
improving health outcomes for patients at risk of 
arrhythmias. This research contributes to the field by 
demonstrating the feasibility and efficacy of a simplified, 
cost-effective approach to arrhythmia detection, 
potentially paving the way for wider deployment of such 
life-saving technology, particularly in underserved 
communities. 

 

2. MATERIALS AND METHOD  

The detection of cardiac arrhythmias from 

electrocardiogram (ECG) data is a critical area in 

cardiology. Traditional methods rely heavily on visual 

interpretation of ECGs by experts, a process that is time-

consuming, costly, and prone to inter-observer variability. 

The application of machine learning models and 

algorithms provides a promising alternative to automate 

this process, enhance diagnostic accuracy, and increase 

access to care. The development of a portable Holter 

device for cardiac arrhythmia detection necessitates a 

thorough understanding of both the hardware and the 

underlying mathematical modeling for energy 

consumption and machine learning algorithms. This 

section outlines the key theoretical concepts that support 

the design, functionality, and efficiency of the device. 

A. Energy Consumption and Battery Sizing 

To ensure continuous operation for 24 hours, the Holter 
system must be powered efficiently. Our design operates 
on a 5V power supply, and it is crucial to accurately 
estimate the total energy consumption of all components 
involved. The following measurements were taken from 
the prototype : 

o ESP32-WROOM-32: Consumed 150 mA at 3.3V 
(approximately 0.5W). Converted to 5V with 90% 
efficiency yields a consumption of about 112 mA. 

o AD8232 Amplifier Module: Consumed 10 mA at 5V 
(0.05W). 

o SD Card Module: Consumed 5 mA at 3.3V 
(approximately 0.0165W). At 5V, with 90% efficiency, 
this equates to about 3.6 mA. 

o 2.4-inch TFT LCD Display: Consumed 100 mA at 5V 
(0.5W). 

o Other Components (peripheral circuits, etc.): 
Consumed 20 mA at 5V (0.1W). 
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To find the total energy consumption over 24 hours, we 
use equation (1): 

𝑇𝑜𝑡𝑎𝑙𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛(𝑊ℎ) = (
245.6

1000
) ∗ 5 ∗

  24ℎ                                                        = 2.96𝑊ℎ                     (1) 

To determine the required battery capacity, we must 
account for overall efficiency during charging and 
discharging, assumed to be 80%. The necessary battery 
capacity must exceed the total energy consumption 
divided by the efficiency, as shown in equation (2): 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑊ℎ)

=
𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑊ℎ)

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
 

                                      =
2.96

0.8
= 3.6                                     (2) 

 

For a LiPo battery rated at 5V, the required capacity in 
mAh can be calculated using equation (3): 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑚𝐴ℎ) =
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑊ℎ)∗1000

𝑉𝑜𝑙𝑡𝑎𝑔𝑒(𝑉)
=

3.96∗1000

5
= 997𝑚𝐴ℎ                                     

(3) 

To ensure reliable operation, it is advisable to select a 
rechargeable LiPo battery with a capacity of at least 1000 
mAh. Considering potential variations in consumption, a 
battery rated at 1200 mAh or more would be preferable to 
enhance longevity and ensure consistent performance. 
The machine learning models implemented in this study 
SVM, KNN, and MLP—rely on mathematical foundations 
for classification tasks. The performance of these 
algorithms is influenced by the choice of features 
extracted from the ECG signals [25 27].  

1. SVM Mathematic model 

The mathematical modeling of a Support Vector Machine 
(SVM) can be described in several ways, depending on 
whether we consider the linearly separable or non-linear 
case. 

2. Linearly Separable Case : 

In this case, the goal is to find the optimal hyperplane that 
separates the two classes with the maximum margin. This 
hyperplane is defined by the equation (4): 

𝑤ᵀ𝑥 +  𝑏 =  0                                        (4)                                                                           

For instance, SVM employs the concept of maximizing the 
margin between classes by solving a constrained 
optimization problem, which can be mathematically 
represented as follows in equation (5) [23]: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
1

2
‖𝜔‖2 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝜔𝑇𝑥𝑖 + 𝑏) ≥ 1, ⩝ 𝑖  (5)                                     

Here, 𝑤 is the weight vector, 𝑏 is the bias, and 𝑦𝑖  are the 

labels of the training data 𝑥𝑖. This optimization problem 

can be solved using the method of Lagrange multipliers, 
which leads to the dual formulation (6): 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑𝛼ᵢ −  (
1

2
) ∑∑𝛼ᵢ𝛼ⱼ𝑦ᵢ𝑦ⱼ𝑥ᵢᵀ𝑥ⱼ                   (6)                                                 

subject to Eq(7) and (8): 

0 ≤  𝛼ᵢ ≤  𝐶 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖                            (7)                                                                        

 ∑𝛼ᵢ𝑦ᵢ =  0                                                   (8)                                                                                    

where: 

αᵢ are the Lagrange multipliers. 

C is a regularization parameter that controls the trade-off 
between margin maximization and classification error 
minimization. 

3. Non-linearly Separable Case: 

In this case, we used a kernel function to project the data 
into a higher-dimensional space where it can be linearly 
separated. The optimization problem then became the 
following equation (9) : 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑𝛼ᵢ −  (
1

2
) ∑∑𝛼ᵢ𝛼ⱼ𝑦ᵢ𝑦ⱼ𝐾(𝑥ᵢ, 𝑥ⱼ)            (9)  

subject to (7) and (8) 

where K(xᵢ, xⱼ) is the kernel function that calculates the dot 
product of the feature vectors projected into the higher-
dimensional space.  Common examples of kernel 
functions include: 

Linear Kernel: 𝐾(𝑥ᵢ, 𝑥ⱼ)  =  𝑥ᵢᵀ𝑥ⱼ 

Polynomial Kernel: 𝐾(𝑥ᵢ, 𝑥ⱼ)  =  (𝑥ᵢᵀ𝑥ⱼ +  𝑐)ᵈ 

Gaussian (RBF) Kernel: 𝐾(𝑥ᵢ, 𝑥ⱼ)  =  𝑒𝑥𝑝(−𝛾||𝑥ᵢ −  𝑥ⱼ||²) 

The choice of kernel function and its parameters is crucial 
for the performance of the SVM. 

In summary, the mathematical modeling of an SVM is 
based on optimizing an objective function that aims to 
maximize the margin between classes, either in the 
original feature space or in a higher-dimensional space 
through the use of a kernel function. 

d) KNN math modelling 

KNN, on the other hand, relies on calculating distances in 
feature space [23]. The classification decision is based on 
the majority voting mechanism among the 'k' nearest 
neighbors 24. K-Nearest Neighbors (KNN) operates on 
the principle that similar data points tend to share the 
same class. It classifies a new data point by considering 
the majority class among its 'k' nearest neighbors. The 
algorithm's effectiveness relies on the chosen distance 
metric and the value of 'k'. 

1. Feature Representation: Each data point is 
represented as a vector, 𝑥 =  (𝑥₁, 𝑥₂, . . . , 𝑥𝑑), in a d-

dimensional feature space, where xᵢ represents the i-
th feature's value. 

2. Distance Metric: The Minkowski distance, a 
generalized metric encompassing both Euclidean 
and Manhattan distances, is employed (equation 10) 
: 

𝑑(𝑥, 𝑦) =  (∑ᵢ|𝑥ᵢ −  𝑦ᵢ|ᵖ)
1

𝑝 =  ||𝑥 −  𝑦||ₚ       (10)                                         

Here, 'p' is a parameter: 

● p = 1 corresponds to Manhattan distance: 

𝑑(𝑥, 𝑦)  =  ∑ᵢ|𝑥ᵢ −  𝑦ᵢ| 

● p = 2 corresponds to Euclidean distance: 

𝑑(𝑥, 𝑦)  =  √(∑ᵢ(𝑥ᵢ −  𝑦ᵢ)²) 

Finding the K-Nearest Neighbors: For a new data point, 
we computed its Minkowski distance to all training data 
points. The 'k' data points with the smallest distances 
were selected as its nearest neighbors. 

Classification: The new data point was assigned to the 
majority class among its k-nearest neighbors. Tie-
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breaking strategies include random selection or distance-
weighted voting. While not a strict mathematical formula, 
the classification can be represented as: 

 𝐶𝑙𝑎𝑠𝑠(𝑥𝑛𝑒𝑤) =  𝑎𝑟𝑔𝑚𝑎𝑥𝑐∑ᵢ 𝐼(𝐶𝑙𝑎𝑠𝑠(𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ᵢ) =  𝑐)  (11)                                              

where: 

o x_new is the new data point. 
o x_neighborᵢ is the i-th nearest neighbor. 

o Class(x) denotes the class of data point x. 
o I(condition) is an indicator function (1 if true, 0 

otherwise). 

o argmax_c returns the class 'c' maximizing the 
sum. 

This effectively counts neighbors per class, assigning the 
new point to the most frequent class among its neighbors. 
The choice of 'p' in the Minkowski distance and the value 
of 'k' are critical parameters influencing KNN's 
performance and are tuned based on the specific dataset 
and problem. 

a) MLP Mathematical Modeling within the Holter Design 

This section details the mathematical underpinnings of 
the Multilayer Perceptron (MLP) used in our Holter 
monitor design. The MLP was chosen for its ability to learn 
complex non-linear relationships within the ECG data. 

● Neuron Model: Each neuron in the MLP 

transforms its inputs as follows (eq 12): 

 

𝑜𝑢𝑡𝑝𝑢𝑡 =  𝑅𝑒𝐿𝑈(∑ᵢ(𝑤ᵢ𝑥ᵢ +  𝑏))                (12)                                                                   

We utilized the Rectified Linear Unit (ReLU) activation 
function for its computational efficiency and effectiveness 
in deep learning: 𝑅𝑒𝐿𝑈(𝑧)  =  𝑚𝑎𝑥(0, 𝑧).  

Here, xᵢ represents the i-th input, wᵢ its corresponding 
weight, and b the neuron's bias. 

● Network Architecture and Calculation: Our 
MLP employed a single hidden layer, striking a 
balance between complexity and computational 
cost. The output of the hidden layer (aʰ) and the 
final output layer (aᵒ) are calculated as equation 
13 and 14: 

𝑎ʰ =  𝑅𝑒𝐿𝑈(𝑊ʰ𝑎ⁱ +  𝑏ʰ)                   (13)         

                                                           

𝑎ᵒ =  𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊ᵒ𝑎ʰ +  𝑏ᵒ)                 (14)                                                                  

where: 

aⁱ is the input vector. 

Wʰ and bʰ are the weight matrix and bias vector for the 
hidden layer, respectively. 

Wᵒ and bᵒ are the weight matrix and bias vector for the 
output layer, respectively. 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑧)  =  1 / (1 +  𝑒𝑥𝑝(−𝑧)) is used in the output 

layer for binary classification, producing a probability 
score. 

● Loss Function and Optimization: We trained 
the MLP using the binary cross-entropy loss 
function show by equation 15: 
 

𝐿𝑜𝑠𝑠 =  −(𝑦𝑙𝑜𝑔(ŷ) +  (1 − 𝑦)𝑙𝑜𝑔(1 − ŷ))         (15) 

                                                    

where y is the true label (0 or 1) and ŷ is the predicted 
probability. This loss function is suitable for our binary 
classification task. We employed the Adam optimizer, a 
variant of stochastic gradient descent, to minimize the 
loss and update the network's weights and biases during 
training. 

MLPs utilized feedforward neural networks, where the 
output was derived from the weighted sum of inputs 
passed through activation functions [24 25]. The input 
layers in the model were fully connected to the hidden 
layer and the output layer is fully connected to the hidden 
layer.  

The theoretical background provided in this section 
demonstrates the foundational principles governing the 
design and functionality of the Holter device. By 
thoroughly understanding energy consumption and 
machine learning modeling, this study aims to develop an 
efficient and effective system for continuous cardiac 
monitoring, addressing the crucial need for accessible 
healthcare technology. 

B. Dataset Description 

The dataset employed for training in this study is the 
"Arrhythmia" dataset from the UCI Machine Learning 
Repository, which comprises data from 452 patients, 
characterized by 279 attributes  

(http://archive.ics.uci.edu/ml/datasets/Arrhythmia). These 
attributes vary in type, including integer, real, and 
categorical values. The primary objective is to classify 
patients into 16 distinct groups: one group representing 
normal ECG readings (class 01) and the remaining 
groups representing different types of arrhythmias 
(classes 02 to 15). A final category (class 16) is 
designated for unclassified cases. 

C. DATA ACQUISITION 

The Holter monitor system's architecture prioritizes low-
cost, energy-efficient components capable of acquiring, 
processing, displaying, and storing ECG data for a 
minimum of 24 hours. Figure 1 illustrates the system's 
interconnection and the roles of each component. 

The data acquisition process began with the ECG Sensor, 
which captured the electrical activity of the heart. This 
sensor was connected to a Conditioning Circuit 
responsible for amplifying and filtering the raw ECG 
signal, removing noise and artifacts to prepare it for digital 
processing. The conditioned signal was then fed into the 
central processing unit, an ESP32 microcontroller. The 
ESP32 is a low-power, Wi-Fi-enabled microcontroller 
ideal for wearable applications like our Holter monitor. It 
performs the crucial task of digitizing the analog ECG 
signal and executing the machine learning algorithms for 
arrhythmia detection. The ESP32 interacts with two key 
storage components. Firstly, an SD Card provides non-
volatile storage for the recorded ECG data, allowing for 
long-term data logging and subsequent analysis. 
Secondly, the ESP32's internal memory is used for 
temporary storage and buffering during real-time 
processing. The system also includes a TFT Screen to 
display real-time ECG waveforms and any detected 
arrhythmia alerts to the user. Finally, the entire system is 
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powered by a Battery, selected for its capacity to sustain 
operation for the required 24-hour monitoring period. The 
system's design emphasizes minimizing power 
consumption to maximize battery life. The data acquisition 
system designed for this study integrates various 
hardware components that work together to capture, 
process, and transmit ECG signals for arrhythmia 
detection. The key components of the system include the 
ESP32 microcontroller, the AD8232 ECG sensor, an SD 
card module for data storage, and a display module for 
user interaction. This section outlines the functionality and 
roles of each component in the overall data acquisition 
system. 

The ESP32 microcontroller serves as the central 
processing unit of the data acquisition system. It is a low-
cost, low-power microcontroller with integrated Wi-Fi and 
Bluetooth capabilities, making it an ideal choice for 
portable applications. The ESP32 is responsible for: It 
processes the raw ECG signals obtained from the 
AD8232 sensor, applying necessary filtering and feature 
extraction algorithms to enhance signal quality. 
Microcontroller interfaces with an SD card module to store 
the acquired ECG data for further analysis and model 
training. It manages communication between the ECG 
sensor, storage module, and any user interface 
components, ensuring seamless data flow within the 
system and implement the AI algorithm. 

The AD8232 ECG sensor is a critical component for 
acquiring the electrical signals generated by the heart. It 
is designed for low-power, low-noise applications and is 
capable of providing high-fidelity ECG signals. Key 
features of the AD8232 include: 

Signal Acquisition: The sensor captures the ECG signals 
through electrodes placed on the patient’s skin. It 
amplifies these signals while filtering out noise and 
interference, providing a clean output suitable for further 
processing. 

Analog Output: The AD8232 outputs an analog signal that 
represents the heart's electrical activity, which is then 

digitized by the ESP32’s analog-to-digital converter 
(ADC) for processing. 

To facilitate data storage, the system incorporates an SD 
card module that allows the ESP32 to write ECG data in 
real-time. This module is essential for: 

Data Logging: It stores large volumes of ECG data, 
enabling long-term monitoring of patients without 
immediate data transfer requirements. 

Post-Processing: The stored data can be accessed later 
for detailed analysis and algorithm training, ensuring that 
valuable information is not lost during continuous 
monitoring. 

A 2.4-inch TFT LCD is integrated into the system to 
provide real-time feedback to users. This component is 
useful for: 

User Interface : It allows healthcare professionals or 
patients to visualize the ECG data in real-time, improving 
user engagement and facilitating immediate feedback. 

Alerts and Notifications : The display show alerts for 
detected arrhythmias, ensuring timely intervention if 
necessary. 

The data acquisition process follows a systematic flow : 

1. Signal Capture : The AD8232 sensor captures the 
heart's electrical signals through electrodes placed on 
the skin. 

2. Signal Amplification and Filtering: The sensor 
amplifies and filters the raw signals to reduce noise. 

3. Analog-to-Digital Conversion : The ESP32 converts 
the analog signals from the AD8232 into digital format 
for processing. 

4. Data Storage : The processed ECG data is logged 
onto the SD card for future analysis. 

5. Data analysis to make prediction  

6. Real-Time Display : the display module shows the 
ECG signals and alerts for any detected abnormal 
patterns. 

 

Fig. 1.  Synopsis of the system 
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The data acquisition system, comprising the ESP32 
microcontroller, AD8232 ECG sensor, SD card module, 
and optional display, forms a cohesive unit designed to 
capture and process ECG signals efficiently. By 
integrating these components, the system facilitates the 
reliable detection and prediction of cardiac arrhythmias, 
contributing to improved patient monitoring and care. 

D. DATA PROCESSING 

Data processing is a crucial step in the development of a 
reliable cardiac arrhythmia detection system. This phase 
encompasses several key activities, including filtering, 
feature extraction, and the application of machine learning 
algorithms. Each of these processes contributes to 
transforming raw ECG signals into meaningful data that 
can be effectively analyzed for arrhythmia classification. 
For filtering the raw ECG signals, bandpass filtering was 
chosen as the most effective method. This technique 
allows signals within a specific frequency range to pass 
through while attenuating frequencies outside this range. 
For ECG signals, a bandpass filter is typically set between 
0.5 Hz and 40 Hz. This range effectively removes high-
frequency noise (such as muscle artifacts) and low-
frequency drift (such as baseline wander). The 
mathematical representation of a bandpass filter can be 
expressed in the frequency domain as follows: 

 

𝐻(𝑓) = {1, 𝑓𝑜𝑟 𝑓1 < 𝑓 < 𝑓2 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                    (16)                                                                          

 

where 𝐻(𝑓) is the filter's transfer function, and 𝑓1 and 𝑓2 

are the cutoff frequencies. From the main database 
consisting of 279 features, we proceed to select the most 

important parameters. To do this, we used two methods 
to determine which one yields the best results: PCA 
(Principal Component Analysis) and Random Forest.  We 
employed a Random Forest classifier for feature 
selection, capitalizing on its inherent ability to rank 
features based on their contribution to predictive 
accuracy. This approach allows for a data-driven 
selection of the most informative features, improving 
model efficiency and mitigating overfitting. Specifically, 
we utilized the feature_importances_ attribute of the 
trained sklearn.ensemble.RandomForestClassifier 
(Python's scikit-learn library). This attribute provides a 
score for each feature, reflecting its importance in the 
model's decision-making process. Higher scores indicate 
greater predictive power. Our feature selection process 
followed these steps:  

1. Initial Feature Set: We began with a comprehensive 
set of 279 features extracted from the ECG signals 
via Continuous Wavelet Transform (CWT). This 
included diverse time-frequency characteristics and 
morphological features derived from the QRSTP 
complexes. 

2. Random Forest Training: A Random Forest 
classifier was trained on the dataset using all 279 
features and their corresponding arrhythmia labels. 

3. Feature Importance Ranking: The 
feature_importances_ attribute was extracted from 
the trained model, providing a ranked list of features 
based on their importance scores. 

4. Threshold Determination: We applied a threshold 
to select the most relevant features. This threshold 
was determined empirically by analyzing the 

 

 

Fig. 2.  Features extraction flowchart 
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distribution of importance scores. Our goal was to 
retain features contributing significantly while 
discarding less informative ones. We opted for a 
data-driven approach, selecting the top N features 
that collectively accounted for 95% of the total 
importance score. 

5. Final Feature Subset: The features whose 
importance scores surpassed the defined threshold 
constituted the final, reduced feature subset used for 
training the arrhythmia detection model. 

This method offers several advantages. It leverages the 
Random Forest's ability to assess feature importance in a 
complex, non-linear manner. The 95% cumulative 
importance threshold ensures the retention of the most 
impactful features while reducing dimensionality. It does 
not only improve computational efficiency but also reduce 
the risk of overfitting by eliminating less relevant or 
redundant features, ultimately enhancing the model's 
generalizability and predictive performance. To analyze 
and extract the QRSTP characteristics from the acquired 
ECG signal, the wavelet transform method was selected 
due to its ability to analyze non-stationary signals like 
ECG comprehensively. Wavelet analysis provides a multi-
resolution approach, allowing for simultaneous 
examination of both time and frequency characteristics. 
This is particularly useful for detecting transient features 
in ECG signals that are indicative of arrhythmias. The 
Continuous Wavelet Transform (CWT) can be 
mathematically expressed as: 

𝑊(𝑎, 𝑏) = ∫
+∞

−∞
𝑥(𝑡)𝛹∗ (

𝑡−𝑏

𝑎
) 𝑑𝑡                  (17)                                                              

Where Ѱ is the wavelet function a is the scale parameter, 
and b is the translation parameter. This method enables 
the extraction of significant features such as QRSTP 
complexes, which are crucial for accurate arrhythmia 
classification. By employing bandpass filtering and 
wavelet transform for filtering and feature extraction, the 
data processing pipeline for the cardiac arrhythmia 
detection system is optimized to enhance signal quality 
and extract relevant characteristics from ECG data.  The 
flowchart in Figure 2 details the algorithm for ECG signal 
processing and feature extraction within the Holter 
system. This process is crucial for identifying key 
components of the ECG waveform and calculating 
relevant intervals, which were then used as features for 
machine learning-based arrhythmia detection. 

The algorithm began by reading the ECG signal ("Read 
ECG"). It then proceeds to detect the P-wave ("Detect P 
Wave?"). If a P-wave is detected ("YES"), the algorithm 
continues to search for the QRS complex ("Detect QRS 
Complex?"). If no P-wave is detected ("No"), the algorithm 
continues reading the ECG signal ("Continue Reading") 
until a P-wave is found. Similarly, if a QRS complex is 
detected ("YES"), the algorithm proceeds to calculate the 
QRS duration ("Calculate QRS Duration") and 
subsequently searches for the T-wave ("Detect T 
Wave?"). If no QRS complex is detected ("No"), the 
algorithm continues reading the ECG signal ("Continue 
Reading"). 

Once the P-wave, QRS complex, and T-wave are 
identified and recorded ("Record P Wave," "Record QRS," 

"Record T Wave"), the algorithm calculates crucial 
intervals: the QT interval ("Calculate QT Interval"), the PR 
interval ("Calculate PR"), and the T interval ("Calculate T 
Interval"). These calculated intervals, along with the QRS 
duration, serve as essential features for characterizing the 
ECG signal and are subsequently used by the machine 
learning models for classification. If no T wave is detected 
("No"), the algorithm continues reading the ECG signal 
("Continue Reading") to find a T wave. Once all features 
are extracted for a given heartbeat, the process repeats 
for the next heartbeat until the end of the monitoring 
period ("End"). This sequential process ensures that all 
relevant features were extracted from each heartbeat, 
providing a comprehensive dataset for accurate 
arrhythmia detection. The "Continue Reading" steps in the 
flowchart ensure that the algorithm continues processing 
the ECG signal even if a particular wave or complex is not 
immediately detected, making the system robust to noise 
and variations in ECG morphology. 

These techniques ensure that the system can 
effectively analyze and classify arrhythmias, contributing 
to improved patient monitoring and care. The data 
analysis phase of the cardiac arrhythmia detection study 
focuses on evaluating the performance of the machine 
learning models using metrics that specifically assess 
classification effectiveness. This section outlines the 
statistical methods and performance metrics that will be 
employed, including accuracy, precision, and F1 score as 
shown by equations  18, 19, 20, 21: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
                (18)                              

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                (19)                                                            

𝑅𝑒𝑐𝑎𝑙𝑙 =
(𝑇𝑃)

(𝑇𝑃 + 𝐹𝑁)
                                (20)                                                           

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ∗
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)                      
    (21) 

 

 

Figure 3: The ECG curve displayed on Processing 

 

3. RESULTS  

A. ECG Signal Detection 

After assembling and testing the circuit on a breadboard, 
it was clear from Figure 3 that the ECG signal was 
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accurately detected. The various waves, such as the P 
wave, QRS complex, and T wave, were distinctly visible, 
allowing for easy determination of the heart rate. This 
curve shows the ECG curve displayed on Processing. 
This curve illustrates a successfully captured and 
processed cardiac signal via an Arduino board. The image 
indicates clear identification of characteristics such as P 
waves, QRS complexes, and T waves, which are distinct 
elements of a normal ECG signal. The regularity of the 
signal suggests a steady heart rhythm, facilitating easy 
measurement of heart rate. However, it is important to 
note that this visual observation is preliminary. A more in-
depth quantitative analysis, including measurements of 
heart rate, RR intervals, and assessment of noise or 
artifacts, is necessary for a comprehensive validation of 
signal quality and acquisition system accuracy. 

Figure 4 illustrates a screenshot from a serial terminal 
software, demonstrating the process of recording ECG 
data onto an SD card. The initial step indicates successful 
initialization of the SD card ("Initializing SD 
card...initialization done."). Following this, multiple lines of 
data are displayed, each starting with "Save data:" 
followed by a series of comma-separated numerical 
values. These values represent the acquired ECG data, 
measuring various parameters (amplitude, duration, etc.) 
at different time points. Each line concludes with "Writing 
to data.txt...done," confirming the successful writing of 
data to a file named "data.txt" on the SD card. The 
repeated display of "Save data:" and "Writing to 
data.txt...done" suggests a continuous acquisition and 
recording process of the ECG data. The serial 
transmission speed was set to 115200 baud, indicating 
successful acquisition and storage of ECG data on the SD 
card, paving the way for subsequent analysis. 

 

Figure 4: The process of recording ECG data onto an SD 
card. 

B. Validation of the Artificial Intelligence Model 

1. Database 

The MIT-BIH Arrhythmia Database used for training and 
validating the model comprises 10,942 instances and 28 
attributes. Two feature selections methods were utilized: 
the first derived from Principal Component Analysis 
(PCA), encompassing 88 principal components 
explaining of the total variance, and the second derived 
from feature selection using random forests, comprising 

the most important features according to the Gini 
criterion.. 

 

Figure 5: Eigenvalues Obtained After Applying PCA 

The figure 5 presents a graph of the eigenvalues obtained 
after applying PCA to the ECG data. The x-axis 
represents the principal component number, while the y-
axis represents the corresponding eigenvalue. A rapid 
decline in eigenvalues was observed at the beginning of 
the graph, indicating that the first principal components 
capture a significant portion of the data variance. The 
decline slows down thereafter, suggesting that 
subsequent principal components contribute less to the 
total variance. This elbow-shaped curve helps determine 
the optimal number of principal components to retain. 
Retaining the first 88 principal components, as mentioned 
earlier, was justified by their representation of a significant 
proportion of total variance while considerably reducing 
data dimensionality, thus simplifying the model and 
enhancing computational efficiency. The elbow observed 
around the 88th principal component supports this choice. 
The  features are move to 14 et The best instances were 
age, sex; height, weight, QRSduration, PRinterval, Q-
Tinterval, Tinterval, Pinterval, QRS, T, P, QRST, heartrate 
and classfeatures.  

2. Data Processing 

Before training our machine learning model, we 
preprocessed the ECG data to ensure optimal 
performance. Specifically, we applied Min-Max 
normalization using sklearn.preprocessing.MinMaxScaler 
to scale the relevant features to a range between 0 and 1. 
This normalization technique enhances the convergence 
speed of the training algorithms and improves the overall 
robustness of the model. We selected Min-Max scaling 
after comparing its performance with other scaling 
methods. 

Table 1: Min-Max Normalization via 
sklearn.preprocessing.MinMaxScaler: 

QT PR RR ….
. 

ST 

0.152631
58 

0.155123
34 

0.445066
25 

….
. 

0.562732
47 

https://teknokes.org/index.php/teknokes/index
https://portal.issn.org/resource/ISSN/2407-8964
https://portal.issn.org/resource/ISSN/1907-7904
mailto:ssteyve@gmail.com
https://creativecommons.org/licenses/by-sa/4.0/


 Jurnal Teknokes 
  Homepage: teknokes.org; Vol. 18, No. 2, pp. 74-89, June 2025;  

e-ISSN: 2407-8964 
p-ISSN: 1907-7904 

 

 
Corresponding author: Nyatte Steyve ssteyve@gmail.com, Laboratory of Technology and Applied Sciences, University of Douala, Cameroon.  
DOI: https://doi.org/10.35882/teknokes.v18i2.38 
Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work is an 
open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).  

82 

0.082775
12 

0.092504
74 

0.450112
98 

….
. 

0.562416
05 

………… ……….. ……….. ….
. 

………… 

0.139712
92 

0.152277
04 

0.472616
68 

…. 0.583765
43 

Table 1 illustrates the effect of Min-Max normalization on 
several key ECG features: QT interval, PR interval, RR 
interval, and ST segment. Each row in the table 
represents a different sample or instance from the 
dataset. The columns display the normalized values of the 
corresponding features after applying the Min-Max scaler. 
For example, the first row shows that the original QT, PR, 
RR, and ST values have been transformed to 
0.15263158, 0.15512334, 0.44506625, and 0.56273247, 
respectively. The "..." entries in the table and the RR 
column represent additional features or data points not 
shown for brevity but treated similarly during the 
normalization process. This normalization ensures that all 
features contribute equally to the model's learning 
process, regardless of their original scales or ranges. 

 

Figure 6: The Impact of Kernel Choice and Critical Factor  

 

3. Model Training 

This section presents the results of classification 
experiments conducted using three algorithms (SVM, 
KNN, MLP) on the preprocessed ECG data for us to 
choose the best algorithm in term of processing time and 
metrics. The classifiers' performance was evaluated using 
precision, recall, F1 score, and confusion matrix on an 
independent test set. Figure 6 depicts the learning curve 
for the SVM model employing an RBF kernel, illustrating 
performance as a function of training set size.  The x-axis 
represents the training set size, while the y-axis 
represents accuracy. The blue line indicates the training 
score, reflecting performance on the training data. The 
orange line represents the cross-validation score, a more 
robust measure of generalization performance on unseen 
data. To ensure robust model evaluation and address 
potential overfitting, we provide further details on our data 

handling procedures. The dataset, derived from the MIT-
BIH Arrhythmia Database, comprised 10,942 instances 
and was reduced to 14 key features (as detailed in the 
Dataset Description section). A stratified 70/30 split was 
employed to create training and testing sets, preserving 
the class distribution across both. The reported 
performance metrics were calculated based on the held-
out test set, which remained untouched during model 
training and hyperparameter optimization. 
Hyperparameter tuning was performed systematically 
using a grid search combined with 5-fold cross-validation.  
The regularization parameter (C) was explored over a 
range of 0.1 to 100 on a logarithmic scale.  For each C 
value, 5-fold cross-validation was performed, and the C 
value maximizing average cross-validation accuracy was 
selected. Figure 6 reveals that both training and cross-
validation scores generally increase with training set size, 
indicating the model's capacity to learn from additional 
data. The consistently higher training score compared to 
the cross-validation score was expected, reflecting 
optimization on the training data. The gap between these 
scores suggests some overfitting, particularly with smaller 
training sets. Increasing training set size leads to 
improved cross-validation scores, signifying better 
generalization. The converging trend of both curves 
suggests potential further performance gains with 
additional data.  This learning curve analysis supports the 
robustness of the hosen SVM model with an RBF kernel 
for arrhythmia detection. 

 

Table 2: Classification report for Linear SVM 

 precision recall f1-score support 

1 0.61 0.95 0.74 46 

2 0.5 0.11 0.18 9 

3 0 0 0 4 

4 0 0 0 3 

5 0.5 0.33 0.4 3 

6 0.66 0.66 0.66 3 

7 0 0 0 0 

8 0 0 0 1 

10 1 0.3 0.333333 10 

14 0 0 0 1 

16 0 0 0 5 

accuracy 0.588235 0.588235 0.588235 0.588235 

macro avg 0.29798 0.206148 0.211598 85 

weighted 
avg 0.542484 0.588235 0.499703 85 

 

For the SVM model, various kernels were tested: linear, 
polynomial, Gaussian (RBF), and sigmoid. The linear 
kernel provided the best performance, achieving an 
accuracy of 78.53% as shown in figure 6. The figure 7 
presents the results of 7-fold cross-validation applied to a 
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K-nearest neighbors (KNN) classifier for classifying 
cardiac arrhythmias.: 

 

Figure 7: 7-Fold Cross-Validation Applied to K-Nearest 
Neighbors Classifier 

The 7-fold cross-validation was performed on a KNN 
model with 5 neighbors (k=5) using features extracted by 
PCA. The average accuracy obtained is 61.26%. The 
associated graph shows the accuracy trend based on the 
number of neighbors (k) tested. Similarly, a 7-fold cross-
validation was performed on a KNN model with 3 
neighbors (k=3) using features selected by random forest. 
The average accuracy obtained is 65.51%. The 
associated graph illustrates the accuracy trend based on 
the number of neighbors (k) tested. 

The results demonstrate that the choice of the number 
of neighbors (k) influences the accuracy of the KNN 
model. For both feature selection methods (PCA and 
random forest), there exists a k value that optimizes 
accuracy. Additionally, using features selected by random 
forest leads to better overall accuracy (65.51%) compared 
to using features derived from PCA (61.26%). This 
suggests that random forest feature selection identified a 
more relevant subset of features for classifying cardiac 
arrhythmias with the KNN classifier. The graphs illustrate 
the accuracy variation for different k values, enabling the 
identification of the optimal k value for each feature 
selection method. 

 

Figure 8 Results from a Multilayer Perceptron (MLP) 
Model 

 

Figure 8 presents the results of a multilayer perceptron 
(MLP) model applied to the classification of cardiac 
arrhythmias. Several observations can be made: 

Overall Performance: The model achieves an accuracy of 
66.91% on the test set and 68.63% on the validation set. 
The slight difference between these two values suggests 
a minor overfitting issue, but overall, the model 
generalizes reasonably well. 

 

Table 3: Classification report for MLP 

1 0.554217 1 0.713178 46 

2 1 0.111111 0.2 9 

3 0 0 0 4 

4 0 0 0 3 

5 0 0 0 3 

6 1 0.333333 0.5 3 

8 0 0 0 1 

10 0 0 0 10 

14 0 0 0 1 

16 0 0 0 5 

accuracy 0.564706 0.564706 0.564706 0.564706 

macro avg 0.255422 0.144444 0.141318 85 

weighted 
avg 0.441106 0.564706 0.424779 85 

 

The MLP model achieves generally acceptable 
performance, but the classification report (table 3) reveals 
significant disparities between classes. While some 
classes are classified well, others pose challenges for the 
model. Further analysis of classification errors and the 
characteristics of misclassified classes is necessary to 
enhance model performance.  

 

Figure 9: Models convergence times 

 

4. Discussion 

A. Analysis of Results 
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The comparative analysis of the three AI models (SVM, 
KNN, and MLP) for classifying cardiac arrhythmias 
highlights the strengths and weaknesses of each 
approach. The SVM model displayed notable sensitivity 
to the choice of kernel and the critical factor 
(regularization parameter). With an accuracy of 78.53%, 
the linear kernel outperformed others, suggesting a 
relatively simple linear relationship between features and 
arrhythmia classes. However, the performance of the 
RBF and polynomial kernels indicates the presence of 
non-linear relationships in the data, which warrants further 
exploration. Utilizing feature selection via random forests 
slightly improved the SVM’s performance compared to 
PCA, underscoring the importance of appropriate feature 
selection. Optimizing the critical factor is crucial to avoid 
both overfitting and underfitting. The KNN model 
demonstrated significant dependence on the choice of the 
number of neighbors (k). The 7-fold cross-validation 
revealed better performance with random forest feature 

selection (65.51%) compared to PCA (61.26%). This 
reinforces the importance of feature quality in maximizing 
model performance. Identifying the optimal k value is 
essential for enhancing the accuracy of the KNN model. 
The MLP model achieved an accuracy of 66.91% on the 
test set and 68.63% on the validation set. While it shows 
acceptable performance, significant disparities in 
performance across classes indicate that some 
arrhythmias were misclassified. This highlights the need 
for a detailed analysis of classification errors and potential 
improvements in network architecture or the use of data 
augmentation techniques. The comparative analysis of 
the three AI models (SVM, KNN, and MLP) for classifying 
cardiac arrhythmias reveals the strengths and 
weaknesses of each approach, with important 
implications for clinical application. While the SVM with a 
linear kernel achieved the highest accuracy (78.53%), this 
metric alone does not fully capture the clinical impact. In 
a real-world setting, the consequences of false positives 

 

Figure 11: 3D printing modele of the Holter 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.  Features extraction flowchart 

 

 

 

Figure 10. Electronic circuit of the Holter 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.  Features extraction flowchart 
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(incorrectly classifying a normal heartbeat as an 
arrhythmia) and false negatives (failing to detect a true 
arrhythmia) can be significantly different. A high rate of 
false positives could lead to unnecessary anxiety, 
additional testing, and potentially even inappropriate 
interventions. Conversely, false negatives could delay 
diagnosis and treatment, potentially with serious health 
consequences. Therefore, optimizing sensitivity (the 
ability to correctly identify true positives) and specificity 
(the ability to correctly identify true negatives) is crucial for 
clinical applicability. Future work will focus on strategies 
to improve these metrics, such as exploring cost-sensitive 
learning approaches that penalize false negatives more 
heavily. 

The bar chart in figure 9 provides a clear comparison of 
the time taken for each machine learning model to 
converge. the convergence time analysis indicates that 
the SVM model is a highly efficient choice for our Holter 
cardiac monitoring system, particularly when rapid 
decision-making is crucial. The integration of the 
arrhythmia detection system within the smart garment 
relies on biomedical sensors connected to an ESP32 
board. First, we designed and 3D printed the casing for 
the smart Holter monitor, as illustrated in the figure 10.  
The Holter monitor's electronic circuit, depicted in Figure 
11, was implemented on a perforated board using 
soldering techniques. The circuit integrates several key 
components: an ESP32 microcontroller, an AD8232 ECG 
sensor, a power management module, and supporting 
circuitry. The ESP32 serves as the central processing 
unit, responsible for data acquisition, signal processing, 
and communication. The AD8232 sensor captures the 
ECG signals, which were then processed by the ESP32. 

 The power management module provides a stable 
voltage supply to the various components, ensuring 
consistent operation. The supporting circuitry includes 
components like resistors, capacitors, and LEDs, which 
play essential roles in signal conditioning, filtering, and 
visual feedback. The perforated board provides a flexible 
platform for prototyping and allows for easy modification 
and debugging of the circuit. The soldering method 
ensures secure connections between the components, 

enhancing the reliability and durability of the device. This 
implementation approach balances functionality, cost-
effectiveness, and ease of assembly, making it suitable 
for a portable and accessible Holter monitor.  
 Figure 12 illustrates the Holter monitor in 
operation, showcasing its ability to capture and display 
cardiac signals in real-time. The displayed ECG waveform 
on the integrated screen provides immediate visual 
feedback, allowing for on-the-spot monitoring of heart 
activity. This feature is particularly useful for initial 
assessment and verification of proper device functionality. 
The compact and portable design of the Holter, evident in 
the figure, emphasizes its suitability for ambulatory 
monitoring. The following table 4 presents a comparison 
of various cardiac monitoring studies, highlighting their 
methodologies, accuracy, key metrics, and notable 
insights. While our proposed Holter system using an SVM 
with an RBF kernel demonstrates promising results with a 
78.33% accuracy, it's crucial to acknowledge its 
limitations and potential weaknesses in comparison to the 
existing approaches. One key limitation is the observed 
variability in performance with different kernel types. 
Further investigation and optimization of kernel selection 
are necessary to ensure consistent and robust 
performance. 

 
Figure 12: the Holter designed 

Table 4. Comparison of various cardiac monitoring studies 

Study/Model Methodology Accuracy 
(%) 

Other Metrics Notes 

Ranjha et al. 
(2023) [8] 

Wireless Holter 
monitor with neural 

networks 

88 Real-time signal 
acquisition, 

cloud integration 

The prediction is performed in the 
cloud. This does not solve the 

problem of insufficient computing 
resources. 

Huang et al. 
(2024) [11] 

AI-based two-hour 
Holter monitoring 

N/A PPV: 76.00%, 
NPV: 96.35% 

Aimed to outperform traditional 
monitoring; questioned 

robustness due to limited sample 
size. 

Our Model 
(SVM with 

RBF) 

Support Vector 
Machine with RBF 

kernel 

78.33 Variability with 
kernel types 

AI is integrated directly into the 
designed device rather than 

relying on cloud-based solutions 
as noted in [8] 
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Comparing our approach to the existing studies reveals 

important distinctions. Ranjha et al. (2023) [8] achieved a 

higher accuracy of 88% with their neural network-based 

wireless Holter monitor. However, their system relies on 

cloud integration for prediction, which presents a 

significant drawback. Cloud dependency introduces 

latency, requires a constant internet connection, and 

raises privacy concerns regarding sensitive patient data.  

Our system addresses this limitation by integrating the AI 

directly into the device, enabling on-device processing 

and eliminating the need for cloud connectivity. Huang et 

al. (2024) [11] focused on AI-based two-hour Holter 

monitoring, achieving a Positive Predictive Value (PPV) of 

76.00% and a Negative Predictive Value (NPV) of 

96.35%. While their study aimed to improve upon 

traditional Holter monitoring, the authors themselves 

acknowledge concerns about the robustness of their 

findings due to a limited sample size.  Furthermore, their 

study has shorter monitoring duration (two hours) limits its 

applicability for detecting less frequent arrhythmias that 

might manifest over longer periods. Our system, designed 

for 24-hour monitoring, offers a more comprehensive 

approach to arrhythmia detection. 

In summary, while our proposed method may not achieve 

the highest reported accuracy compared to cloud-based 

solutions, its on-device processing capability offers 

significant advantages in terms of real-time analysis, 

reduced latency, enhanced privacy, and independence 

from internet connectivity.  Future work will focus on 

refining kernel selection and exploring other model 

optimization strategies to further improve accuracy and 

robustness.  Direct comparison with studies like Huang et 

al. (2024) [11] is challenging due to differences in reported 

metrics and study durations, highlighting the need for 

standardized evaluation protocols in this field. 

4. CONCLUSION  

The primary objective of this study was to develop an 
integrated smart garment capable of detecting cardiac 
arrhythmias using advanced machine learning algorithms. 
By leveraging physiological data from biomedical sensors 
and implementing effective signal processing techniques, 
the system aims to provide accurate and timely detection 
of arrhythmias, thereby enhancing patient monitoring and 
care. The results of the comparative analysis of three 
machine learning models Support Vector Machine (SVM), 
K-Nearest Neighbors (KNN), and Multilayer Perceptron 
(MLP) revealed distinct strengths and weaknesses in 
each approach. The SVM model with a linear kernel 
achieved the highest accuracy of 78.53%, indicating a 
relatively simple linear relationship between features and 
arrhythmia classes. The KNN model demonstrated 
performance sensitivity to the choice of the number of 
neighbors, while the MLP model exhibited acceptable 
accuracy but struggled with class imbalances. 
Additionally, the integration of feature selection through 
random forests enhanced the performance of both the 
SVM and KNN models. Overall, the smart garment 

system shows considerable potential for early arrhythmia 
detection, although challenges related to false positives 
and class imbalances remain. Future research will focus 
on several key areas to enhance the effectiveness of the 
arrhythmia detection system. Efforts will be made to 
optimize the signal processing algorithms further, 
incorporating advanced noise reduction techniques and 
exploring additional feature extraction methods. 
Additionally, the integration of data from other sensors, 
such as accelerometers and respiratory monitors, will be 
pursued to enrich the model and improve diagnostic 
accuracy. Investigating more sophisticated machine 
learning techniques, including convolutional and recurrent 
neural networks, will also be part of the future work. 
Finally, large-scale clinical validation involving diverse 
patient populations and arrhythmia types will be essential 
to confirm the system's robustness and reliability in real-
world applications. Enhancing the garment's comfort and 
usability, alongside developing a user-friendly interface 
for data visualization and interpretation, will be crucial for 
patient acceptance and engagement. 
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